The effect of several structurally different benzimidazole compounds on CYP1A1 expression at the transcriptional, mRNA and protein levels was investigated in the rat hepatoma H4IIE cell line. Omeprazole, thiabendazole, carbendazim, 2-mercaptobenzimidazole and 2-mercapto-5-methoxybenzimidazole caused a dose-dependent increase in CYP1A1 protein levels that reached maximum effect at 250 microm, as measured by Western blot. In addition, hydroxyomeprazole, 2-aminobenzimidazole and 2-mercapto-5-nitro-benzimidazole caused a notable increase in CYP1A1 protein expression, whereas 5-O-desmethylomeprazole, 2-hydroxybenzimidazole, 2-benzimidazole propionic acid and 5-benzimidazole carboxylic acid were ineffective. Thus, benzimidazole substituted with a thiol or an amino group in the 2-position were active inducers. Northern blot analysis confirmed an extensive increase of CYP1A1 mRNA induced by omeprazole and 2-mercapto-5-methoxybenzimidazole which was 32% and 49% of maximal induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) respectively, whereas thiabendazole and carbendazim showed approximately 15% increase as compared to TCDD. Transient transfection of H4IIE cells, with a XRE-pGL3 reporter gene construct revealed a 2.3-4.3-fold induction by carbendazim, thiabendazole, and 2-mercapto-5-methoxybenzimidazole as compared to a 3.3- and 23-fold induction by omeprazole and TCDD, respectively. Thus, these data indicate that the benzimidazoles utilize the aryl hydrocarbon receptor-arnt-XRE-mediated signal-transduction pathway for induction of the CYP1A1 gene.