Purpose: Increases in the phosphorylation of a small heat shock protein (HSP20) are associated with cyclic nucleotide-dependent vasorelaxation. The effect of pressure and flow on vessel diameter was studied. We hypothesized that physiologic conditions that induce vasorelaxation would lead to increases in HSP20 phosphorylation.
Methods: Flow-dependent changes in vessel diameter, at different intraluminal pressures, were measured with a laser optical micrometer in intact bovine carotid arteries. Experiments were performed in the presence and absence of norepinephrine (10(-5) mol/L). Increases in the phosphorylation of HSP20 were determined with isoelectric focusing immunoblots.
Results: The increase in vessel diameter was most significant at low intraluminal pressures (20 mm Hg), high flow rates (200 mL/min), and in the presence of the vasoconstrictor norepinephrine (10(-5) mol/L). The addition of methylene blue (a guanylate cyclase inhibitor) completely inhibited flow-induced vasodilation. Under conditions in which maximal flow induced vasodilation occurred, there were significant increases in the phosphorylation of HSP20.
Conclusion: Flow-dependent vasodilation in isolated perfused segments of bovine carotid arteries was maximal when the intraluminal pressures were low and when the vessels were precontracted with norepinephrine. Flow-dependent vasodilation was inhibited by methylene blue and was associated with increases in the phosphorylation of HSP20, suggesting that the vasodilation was mediated by endothelial production of nitric oxide.