Recently, a P-type ATPase was cloned from bovine chromaffin granules (b-ATPase II) and a mouse teratocarcinoma cell line (m-ATPase II) and was shown to be homologous to the Saccharomyces cerevisiae DRS2 gene, the inactivation of which resulted in defective transport of phosphatidylserine. Here, we report the cloning from a human skeletal muscle cDNA library of a human ATPase II (h-ATPase II), orthologous to the presumed bovine and mouse aminophospholipid translocase (95.3 and 95.9% amino acid identity, respectively). Compared with the bovine and mouse counterparts, the cloned h-ATPase II polypeptide exhibits a similar membrane topology, but contains 15 additional amino acids (1163 vs 1148) located in the second intracytoplasmic loop, near the DKTGTLT-phosphorylation site. However, RT-PCR analysis performed with RNA from different human tissues and cell lines revealed that the coding sequence for these 15 residues is sometimes present and sometimes absent, most likely as a result of a tissue-specific alternative splicing event. The h-ATPase II gene, which was mapped to chromosome 4p14-p12, is expressed as a 9.5-kb RNA species in a large variety of tissues, but was not detected in liver, testis, and placenta, nor in the erythroleukemic cell line K562.
Copyright 1999 Academic Press.