1. The regulation of large conductance calcium- and voltage-activated potassium (BK) currents by activation of the protein kinase C (PKC) and glucocorticoid signalling pathways was investigated in AtT20 D16:16 clonal mouse anterior pituitary corticotroph cells. 2. Maximal activation of PKC using the phorbol esters, 4beta-phorbol 12-myristate, 13-acetate (PMA), phorbol 12, 13 dibutyrate (PDBu) and 12-deoxyphorbol 13-phenylacetate (dPPA) elicited a rapid, and sustained, inhibition of the outward steady-state voltage- and calcium- dependent potassium current predominantly carried through BK channels. 3. The effect of PMA was blocked by the PKC inhibitors bisindolylmaleimide I (BIS; 100 nM) and chelerythrine chloride (CHE; 25 microM) and was not mimicked by the inactive phorbol ester analogue 4alpha-PMA. 4. PMA had no significant effect on the 1 mM tetraethylammonium (TEA)-insensitive outward current or pharmacologically isolated, high voltage-activated calcium current. 5. PMA had no significant effect on steady-state outward current in cells pre-treated for 2 h with 1 microM of the glucocorticoid agonist dexamethasone. Dexamethasone had no significant effect on steady-state outward current amplitude or sensitivity to 1 mM TEA and did not block PMA-induced translocation of the phorbol ester-sensitive PKC isoforms, PKCalpha and PKCepsilon, to membrane fractions. 6. Taken together these data suggest that in AtT20 D16:16 corticotroph cells BK channels are important targets for PKC action and that glucocorticoids inhibit PKC signalling downstream of PKC activation.