The only trypanosomatid so far proved to undergo genetic exchange is Trypanosoma brucei, for which hybrid production after co-transmission of different parental strains through the tsetse fly vector has been demonstrated experimentally. Analogous mating experiments have been attempted with other Trypanosoma and Leishmania species, so far without success. However, natural Leishmania hybrids, with a combination of the molecular characters of two sympatric species, have been described amongst both New and Old World isolates. Typical homozygotic and heterozygotic banding patterns for isoenzyme and deoxyribonucleic acid markers have also been demonstrated amongst naturally-occurring T. cruzi isolates. The mechanism of genetic exchange in T. brucei remains unclear, although it appears to be a true sexual process involving meiosis. However, no haploid stage has been observed, and intermediates in the process are still a matter for conjecture. The frequency of sex in trypanosomes in nature is also a matter for speculation and controversy, with conflicting results arising from population genetics analysis. Experimental findings for T. brucei are discussed in the first section of this review, together with laboratory evidence of genetic exchange in other species. The second section covers population genetics analysis of the large body of data from field isolates of Leishmania and Trypanosoma species. The final discussion attempts to put the evidence from experimental and population genetics into its biological context.