A magnetic resonance imaging method for simultaneous and accurate determination of gaseous diffusion constant and longitudinal relaxation time is presented. The method is based on direct observation of diffusive motion. Initially, a slice-selective saturation of helium-3 (3He) spins was performed on a 3He/O2 phantom (9 atm/2 atm). A time-delay interval was introduced after saturation, allowing spins to diffuse in and out of the labeled slice. Following the delay interval a one-dimensional (1-D) projection image of the phantom was acquired. A series of 21 images was collected, each subsequent image having been acquired with an increased delay interval. Gradual spreading of the slice boundaries due to diffusion was thus observed. The projection profiles were fit to a solution of the Bloch equation corrected for diffusive motion. The fitting procedure yielded a value of D3He = 0.1562+/-0.0013 cm2/s, in good agreement with a measurement obtained with a modified version of the standard pulsed-field gradient technique. The method also enabled us to accurately measure the longitudinal relaxation of 3He spins by fitting the change of the total area under the projection profiles to an exponential. A value of T1 = 1.67 s (2 T field) was recorded, in excellent agreement with an inversion recovery measurement.