Phorbol ester exposure activates an AP-1-mediated increase in ERCC-1 messenger RNA expression in human ovarian tumor cells

Cell Mol Life Sci. 1999 Mar;55(3):456-66. doi: 10.1007/s000180050302.

Abstract

ERCC-1 is an essential gene in the nucleotide excision repair pathway, and may be essential for life. However, the mechanism of transcriptional activation and regulation of ERCC-1 gene expression is unclear. We therefore investigated the effect of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the expression of the ERCC-1 gene in A2780/CP70 human ovarian carcinoma cells. TPA induced a four- to sixfold increase in steady-state ERCC-1 messenger RNA (mRNA) levels that was time- and concentration-dependent. Nuclear run-on experiments demonstrated that the rate of transcription of ERCC-1 was approximately 2.8-fold higher in TPA-treated cells than in the controls. TPA stimulation of A2780/CP70 cells also resulted in a rapid but transient induction of c-jun and c-fos as determined by Northern and Western blot analyses, which peaked about 2 h before the peak in ERCC-1 expression. Electrophoretic mobility shift assays of nuclear extracts from TPA-treated cells revealed an increase in DNA-binding activity specific for the AP-1-like binding site in the 5'-flanking region of ERCC-1. c-Jun and c-Fos proteins were confirmed to be the components of the activated AP-1 complex by supershift analysis. The increase in AP-1 activity occurs immediately before the increase in ERCC-1 transcription. The increase in AP-1 DNA-binding activity and the increase in ERCC-1 mRNA expression were prevented by pretreatment with cycloheximide. These data suggest that AP-1 may contribute to the upregulation of ERCC-1 in response to TPA in human ovarian cancer cells.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amanitins / pharmacology
  • Binding Sites
  • Carcinogens / pharmacology*
  • Cycloheximide / pharmacology
  • DNA Repair / drug effects*
  • DNA-Binding Proteins*
  • Endonucleases*
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Neoplasm Proteins / genetics*
  • Nucleic Acid Synthesis Inhibitors / pharmacology
  • Ovarian Neoplasms / metabolism
  • Ovarian Neoplasms / pathology*
  • Protein Synthesis Inhibitors / pharmacology
  • Proteins / genetics*
  • RNA, Messenger / biosynthesis*
  • RNA, Messenger / genetics
  • RNA, Neoplasm / biosynthesis*
  • RNA, Neoplasm / genetics
  • Tetradecanoylphorbol Acetate / pharmacology*
  • Transcription Factor AP-1 / physiology*
  • Transcription, Genetic / drug effects*
  • Tumor Cells, Cultured

Substances

  • Amanitins
  • Carcinogens
  • DNA-Binding Proteins
  • Neoplasm Proteins
  • Nucleic Acid Synthesis Inhibitors
  • Protein Synthesis Inhibitors
  • Proteins
  • RNA, Messenger
  • RNA, Neoplasm
  • Transcription Factor AP-1
  • Cycloheximide
  • ERCC1 protein, human
  • Endonucleases
  • Tetradecanoylphorbol Acetate