Maternal exposure to benzo[a]pyrene alters development of T lymphocytes in offspring

Immunopharmacol Immunotoxicol. 1999 May;21(2):379-96. doi: 10.3109/08923979909052769.

Abstract

Childhood cancer has been increasing significantly over the past two decades in the United States, suggesting that environmental exposures may be playing a causative role. One such cause may be maternal smoking during pregnancy. Suspected carcinogens in cigarette smoke and environmental pollution include N-nitrosamines and polycyclic aromatic hydrocarbons, which may be several micrograms per exposure. Previously, we have shown that mouse progeny of mothers exposed to benzo[a]pyrene (B[a]P) during midpregnancy had abnormalities in their humoral and cell-mediated immune response. Immunodeficiency was detectable during gestation, at one week after birth and persisted for 18 months. Tumor incidences in progeny were eight to 10-fold higher than in controls. The present study compared frequencies of CD4+, CD8+, V gamma 2+, and V beta 8+ T cells in progeny following in utero exposure to B[a]P. The significant reduction in newborn CD4+CD8+, CD4+CD8+V beta 8+ thymocytes and CD4+ splenocytes from 1-week-old progeny, suggests that B[a]P induces abnormal changes in developing T cells. These early alterations may lead to postnatal T cell suppression, thus providing a more suitable environment for the growth of tumors later in life. These results suggest that developmental immunosuppression mediated by B[a]P may play a critical role in the relationship between maternal exposures and childhood carcinogenesis.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Benzo(a)pyrene / toxicity*
  • Carcinogens / toxicity*
  • Female
  • Fetus / drug effects*
  • Male
  • Mice
  • Mice, Inbred C3H
  • Pregnancy
  • Receptors, Antigen, T-Cell, alpha-beta / analysis
  • Receptors, Antigen, T-Cell, gamma-delta / analysis
  • T-Lymphocytes / drug effects*
  • T-Lymphocytes / physiology

Substances

  • Carcinogens
  • Receptors, Antigen, T-Cell, alpha-beta
  • Receptors, Antigen, T-Cell, gamma-delta
  • Benzo(a)pyrene