The role of transforming growth factor beta (TGF-beta) in the regulation of cranial suture fusion has been studied by various qualitative techniques such as in situ hybridization and immunohistochemistry. Although the relative expression of TGF-beta isoforms has been assessed in these studies, increased expression of TGF-beta has not been demonstrated in a quantitative fashion. Therefore, the purpose of this study was to quantify TGF-beta production by fusing (posterofrontal [PF]) and nonfusing (sagittal) mouse sutures using two different quantitative TGF-beta assays. The PF and sagittal sutures of 25-day-old mice were harvested and cultured separately in vitro. Culture media conditioned for 48 hours were collected after 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 days of culture, and total TGF-beta production was assessed using a TGF-beta bioassay. For a quantitative TGF-beta1 immunoassay, media conditioned for 48 hours were collected after 3, 5, 7, 9, 14, 22, and 28 days of culture. The TGF-beta bioassay revealed large amounts of total TGF-beta activity in both PF and sagittal sutures during the first week of culture, with decreasing amounts thereafter. Absolute TGF-beta activity in conditioned media collected from PF sutures at several early time points was higher than those obtained from sagittal sutures; however, these differences were not statistically significant. The results of the TGF-beta1 immunoassay (enzyme-linked immunosorbent assay) were similar to the bioassay in that the highest TGF-beta1 levels were noted during the first week of culture period and decreased thereafter. Analysis of variance of these samples, however, revealed significantly more TGF-beta1 protein in samples collected from the PF suture compared with the sagittal suture on days 3 and 5 of culture (p < 0.05). TGF-beta1 levels in the conditioned media obtained from PF sutures remained elevated compared with the sagittal suture on days 7 and 9; however, these differences were not statistically significant. Increased production of TGF-beta in the conditioned media of fusing PF sutures is the first such quantitative demonstration of growth factor upregulation during suture fusion and supports the hypothesis that TGF-beta expression may be important in cranial suture fusion.