We evaluated a method for measuring abnormal upper-limb motor performance in post-stroke hemiparetic subjects. A servomechanism (MIME) moved the forearm in simple planar trajectories, directly controlling hand position and forearm orientation. Design specifications are presented, along with system performance data during an initial test of 13 stroke subjects with a wide range of impairment levels. Performance of subjects was quantified by measuring the forces and torques between the paretic limb and the servomechanism as the subjects relaxed (passive), or attempted to generate force in the direction of movement (active). During passive movements, the more severely impaired subjects resisted movement, producing higher levels of negative work than less-impaired subjects and neurologically normal controls. During active movements, the more severely impaired subjects produced forces with larger directional errors, and were less efficient in producing work. These metrics had significant test-retest repeatability. These motor performance metrics can potentially detect smaller within-subject changes than motor function scales. This method could complement currently used measurement tools for the evaluation of subjects during recovery from stroke, or during therapeutic interventions.