Numerous studies have established that aflatoxin is a potent developmental toxin in animals. Previous research has demonstrated that a phyllosilicate clay, hydrated sodium calcium aluminosilicate (HSCAS or Novasil), tightly binds and immobilizes aflatoxins in the gastrointestinal tract of animals and markedly reduces the bioavailability and toxicity of aflatoxin. Our objective in this study was to utilize the pregnant rat as an in vivo model to compare the potential of HSCAS and bentonite to prevent the developmental toxicity of aflatoxin. Aluminosilicates (HSCAS) and bentonite were added to the diet at a level of 0.5% (w/w) and fed to the pregnant rat throughout pregnancy (i.e. days 0-20). Test animals were fed an aflatoxin-contaminated diet (2.5 mg kg(-1) diet) with or without sorbents during gestation days 6-15. Evaluations of toxicity were performed on day 20. These included maternal (mortality, body weights, feed intake and litter weights), developmental (embryonic resorptions and fetal body weights) and biochemical (ALT, AST and AP) evaluations. Sorbents alone were not toxic and aflatoxin alone resulted in significant maternal and developmental toxicity. Animals treated with phyllosilicate (plus aflatoxin) were comparable to controls following evaluations for resorptions, live fetuses and fetal body weights, as well as biochemical parameters. While bentonite plus aflatoxin resulted in significant reduction in fetal body weight, none of the fetuses from HSCAS or bentonite plus aflatoxin-treated groups had any gross, internal soft tissue or major skeletal malformations.