Receptive fields and binaural interactions for virtual-space stimuli in the cat inferior colliculus

J Neurophysiol. 1999 Jun;81(6):2833-51. doi: 10.1152/jn.1999.81.6.2833.

Abstract

Sound localization depends on multiple acoustic cues such as interaural differences in time (ITD) and level (ILD) and spectral features introduced by the pinnae. Although many neurons in the inferior colliculus (IC) are sensitive to the direction of sound sources in free field, the acoustic cues underlying this sensitivity are unknown. To approach this question, we recorded the responses of IC cells in anesthetized cats to virtual space (VS) stimuli synthesized by filtering noise through head-related transfer functions measured in one cat. These stimuli not only possess natural combinations of ITD, ILD, and spectral cues as in free field but also allow precise control over each cue. VS receptive fields were measured in the horizontal and median vertical planes. The vast majority of cells were sensitive to the azimuth of VS stimuli in the horizontal plane for low to moderate stimulus levels. Two-thirds showed a "contra-preference" receptive field, with a vigorous response on the contralateral side of an edge azimuth. The other third of receptive fields were tuned around a best azimuth. Although edge azimuths of contra-preference cells had a broad distribution, best azimuths of tuned cells were near the midline. About half the cells tested were sensitive to the elevation of VS stimuli along the median sagittal plane by showing either a peak or a trough at a particular elevation. In general receptive fields for VS stimuli were similar to those found in free-field studies of IC neurons, suggesting that VS stimulation provided the essential cues for sound localization. Binaural interactions for VS stimuli were studied by comparing responses to binaural stimulation with responses to monaural stimulation of the contralateral ear. A majority of cells showed either purely inhibitory (BI) or mixed facilitatory/inhibitory (BF&I) interactions. Others showed purely facilitatory (BF) or no interactions (monaural). Binaural interactions were correlated with azimuth sensitivity: most contra-preference cells had either BI or BF&I interactions, whereas tuned cells were usually BF. These correlations demonstrate the importance of binaural interactions for azimuth sensitivity. Nevertheless most monaural cells were azimuth-sensitive, suggesting that monaural cues also play a role. These results suggest that the azimuth of a high-frequency sound source is coded primarily by edges in azimuth receptive fields of a population of ILD-sensitive cells.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Action Potentials
  • Animals
  • Cats
  • Functional Laterality / physiology
  • Inferior Colliculi / cytology
  • Inferior Colliculi / physiology*
  • Neurons / physiology
  • Sound Localization / physiology*