Metal ions or metal ions in complexes or compounds have been used for centuries to disinfect fluids, solids and tissues. The biocidal effect of silver, with its broad spectrum of activity including bacterial, fungal and viral agents, is particularly well known and the term "oligodynamic activity" was coined for this phenomenon. Silver ions have an affinity to sulfhydryl groups in enzyme systems of the cell wall, through which they interfere with the transmembranous energy transfer and electron transport of bacterial microorganisms. Silver ions also block the respiratory chain of microorganisms reversibly in low concentrations and irreversibly in higher concentrations. Binding to the DNA of bacteria and fungi increases the stability of the bacterial double helix and thus inhibits proliferation. There is no cross resistance with antibiotics and also no induction of antimicrobial resistance by silver ions. The concentrations required for bactericidal activity are in the range 10(-9) mol/l. These concentrations can be achieved in solution by the interaction of metallic silver with electrolytes only if there is a large enough surface of silver. By a novel technology, metallic silver is distributed in submicron particles in polyurethane and results in a concentration of 0.8% in an active surface of 450 cm2/g polyurethane. Polyurethane is hygroscopic and rapidly attracts water; the interaction of electrolyte solutions with the extremely finely distributed silver throughout the polyurethane releases bactericidal concentrations of silver ions over a period of years to the surface of the material. The electronegatively charged surface of bacteria attracts the positively charged silver ions. The concentrations released from the polyurethane are far below the toxic concentrations for humans.