We report the initial characterization of an Arabidopsis thaliana cDNA (atdrg1), a member of a new class of GTP-binding proteins (G-proteins) in plants. The predicted ATDRG1 protein contains all five structural motifs characteristic of the G-protein superfamily. Apart from these motifs, the amino acid sequence differs substantially from all known G-proteins except for a recently discovered new family named developmentally regulated G-proteins (DRGs). Sequences closely related to atdrg1 are found in species as distant as human (80% amino acid conservation), Drosophila (74%), yeast (77%) and Caenorhabditis elegans (77%). The remarkable evolutionary conservation of these proteins suggests an important, but as yet unclear role. Phylogenetic analysis of the available homologous sequences strongly suggests a diphyletic origin of the eukaryotic DRG proteins. Northern analysis shows high levels of atdrg1 mRNA in all Arabidopsis tissues studied, and homologues of atdrg1 are present throughout the plant kingdom. In situ hybridization reveals that atdrg1 is highly expressed in actively growing tissues and reproductive organs. Southern analysis indicates the presence of either one or two copies of atdrg1 in the Arabidopsis genome. Immunolocalization studies show that the protein is present in cytoplasmic vesicles found mainly in actively growing tissues suggesting a putative role for ATDRG1 in either the regulation of vesicle transport or the regulation of enzymes involved in storage protein processing.