A rigorous characterization of the dynamic regimes underlying human seizures is needed to understand, and possibly control, the transition to seizure. Intra- or extracranial brain electrical activity was recorded in five patients with partial epilepsy, and the interictal and ictal activity analysed to determine the dynamics of seizures. We constructed first-return one-dimensional maps by fitting the scatter plots of interpeak intervals. The features of the mapping indicated that type III intermittency is the dynamic characteristic of the ictal events. This was confirmed using histograms of the durations of the regular phases during seizures. The intermittent regime explains the abrupt transitions observed during ictal events in terms of transient stabilization of the unstable steady state.