The effect of normal aging on the coupling of neural activity to the bold hemodynamic response

Neuroimage. 1999 Jul;10(1):6-14. doi: 10.1006/nimg.1999.0444.

Abstract

The use of functional neuroimaging to test hypotheses regarding age-related changes in the neural substrates of cognitive processes relies on assumptions regarding the coupling of neural activity to neuroimaging signal. Differences in neuroimaging signal response between young and elderly subjects can be mapped directly to differences in neural response only if such coupling does not change with age. Here we examined spatial and temporal characteristics of the BOLD fMRI hemodynamic response in primary sensorimotor cortex in young and elderly subjects during the performance of a simple reaction time task. We found that 75% of elderly subjects (n = 20) exhibited a detectable voxel-wise relationship with the behavioral paradigm in this region as compared to 100% young subjects (n = 32). The median number of suprathreshold voxels in the young subjects was greater than four times that of the elderly subjects. Young subjects had a slightly greater signal:noise per voxel than the elderly subjects that was attributed to a greater level of noise per voxel in the elderly subjects. The evidence did not support the idea that the greater head motion observed in the elderly was the cause of this greater voxel-wise noise. There were no significant differences between groups in either the shape of the hemodynamic response or in its the within-group variability, although the former evidenced a near significant trend. The overall finding that some aspects of the hemodynamic coupling between neural activity and BOLD fMRI signal change with age cautions against simple interpretations of the results of imaging studies that compare young and elderly subjects.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / physiology*
  • Female
  • Hemodynamics / physiology*
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Oxygen / blood*
  • Psychomotor Performance / physiology
  • Reaction Time
  • Somatosensory Cortex / pathology*

Substances

  • Oxygen