Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product

Mol Pharmacol. 1999 Jul;56(1):235-42. doi: 10.1124/mol.56.1.235.

Abstract

Receptor activity-modifying proteins (RAMPs) are single-transmembrane proteins that transport the calcitonin receptor-like receptor (CRLR) to the cell surface. RAMP 1-transported CRLR is a calcitonin gene-related peptide (CGRP) receptor. RAMP 2- or RAMP 3-transported CRLR is an adrenomedullin receptor. The role of RAMPs beyond their interaction with CRLR, a class II G protein-coupled receptor, is unclear. In this study, we have examined the role of RAMPs in generating amylin receptor phenotypes from the calcitonin (CT) receptor gene product. Cotransfection of RAMP 1 or RAMP 3 with the human CT receptor lacking the 16-amino acid insert in intracellular domain 1 (hCTRI1-) into COS-7 cells induced specific 125I-labeled rat amylin binding. RAMP 2 or vector cotransfection did not cause significant increases in specific amylin binding. Competition-binding characterization of the RAMP-induced amylin receptors revealed two distinct phenotypes. The RAMP 1-derived amylin receptor demonstrated the highest affinity for salmon CT (IC50, 3.01 +/- 1.44 x 10(-10) M), a high to moderate affinity for rat amylin (IC50, 7.86 +/- 4.49 x 10(-9) M) and human CGRPalpha (IC50, 2.09 +/- 1.63 x 10(-8) M), and a low affinity for human CT (IC50, 4.47 +/- 0.78 x 10(-7) M). In contrast, whereas affinities for amylin and the CTs were similar for the RAMP 3-derived receptor, the efficacy of human CGRPalpha was markedly reduced (IC50, 1.12 +/- 0.45 x 10(-7) M; P <.05 versus RAMP 1). Functional cyclic AMP responses in COS-7 cells cotransfected with individual RAMPs and hCTRI1- were reflective of the phenotypes seen in competition for amylin binding. Confocal microscopic localization of c-myc-tagged RAMP 1 indicated that, when transfected alone, RAMP 1 almost exclusively was located intracellularly. Cotransfection with calcitonin receptor (CTR)I1- induced cell surface expression of RAMP 1. The results of experiments cross-linking 125I-labeled amylin to RAMP 1/hCTR-transfected cells with bis succidimidyl suberate were suggestive of a cell-surface association of RAMP 1 and the receptors. Our data suggest that in the CT family of receptors, and potentially in other class II G protein-coupled receptors, the cellular phenotype is likely to be dynamic in regard to the level and combination of both the receptor and the RAMP proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding, Competitive
  • CHO Cells
  • COS Cells
  • Cells, Cultured
  • Chlorocebus aethiops
  • Cricetinae
  • Cyclic AMP / metabolism
  • Dose-Response Relationship, Drug
  • Humans
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins / metabolism*
  • Receptor Activity-Modifying Proteins
  • Receptors, Calcitonin / metabolism*
  • Receptors, Islet Amyloid Polypeptide
  • Receptors, Peptide / metabolism*

Substances

  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • Receptor Activity-Modifying Proteins
  • Receptors, Calcitonin
  • Receptors, Islet Amyloid Polypeptide
  • Receptors, Peptide
  • Cyclic AMP