Nitro derivative (nitro-IQ) of a carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is known to be a potent mutagen as well as IQ, and nitro-IQ is believed to be activated enzymatically by nitroreductase. We investigated nonenzymatic reduction of nitro-IQ by an endogenous reductant NADH and the ability of inducing DNA damage by nitro-IQ. Nitro-IQ caused DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine in the presence of NADH and Cu(II). Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of H2O2 and Cu(I). Nitro-IQ induced DNA cleavage frequently at thymine and cytosine residues in the presence of NADH and Cu(II). UV-vis spectroscopic study showed that no spectral change of Nitro-IQ and NADH was observed in the absence of Cu(II), while rapid spectral change was observed in the presence of Cu(II), suggesting that Cu(II) mediated redox reaction of nitro-IQ and NADH. These results suggest that nitro-IQ can be reduced nonenzymatically by NADH in the presence of Cu(II), and the redox reaction resulted in oxidative DNA damage due to the copper-oxygen complex, derived from the reaction of Cu(I) with H2O2. We conclude that nonenzymatic reduction of nitro-IQ and resulting in oxidative DNA damage can play a role in carcinogenesis of IQ.