A technique for assessing in vivo fiber connectivity in the human brain is presented. The method utilizes a novel connectivity algorithm that operates in three spatial dimensions and uses estimates of fiber tract orientation and tissue anisotropy, obtained from diffusion tensor magnetic resonance imaging, to establish the pathways of fiber tracts. Sample in vivo connectivity images from healthy human brain are presented that demonstrate connections in the white matter tracts. White matter connectivity information is potentially of interest in the study of a range of neurological, psychiatric, and developmental disorders and shows promise for following the natural history of disease.