PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed, and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs, as determined in the modified Boyden chamber, as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly, in addition to inhibition of Src kinase, PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells, including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR, PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases, the activities of the epidermal growth factor receptor, fibroblast growth factor receptor-1, and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872, whereas PDGF alpha-receptor was susceptible, albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events, creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity, such as vascular remodeling and restenosis.