Vaccination with the influenza A transmembrane protein M2 provides enhanced viral clearance and recovery from influenza A virus infection in mice. However, the high degree of hydrophobicity of the protein limits its purification for vaccine purposes. We have attempted to alter the structure of the M2 protein to allow high level recombinant expression in Escherichia coli, to reduce its hydrophobicity and improve protein solubility, thus improving its properties as a vaccine subunit candidate. Constructs investigated include deletion of the transmembrane domain of M2 (residues 26-43) and an extended deletion (residues 26-55). A full-length M2 protein was not pursued because of poor expression, even in the presence of amantadine. Expressed as glutathione S-transferase fusion proteins and used to vaccinate mice, either deletion construct was found to raise M2-specific serum antibodies and enhance viral clearance in mice challenged with homologous and heterologous influenza A viruses. Enzymatic cleavage from the GST fusion domain produces soluble protein giving similar results. The results demonstrate that large alterations of M2 protein structure can improve its isolation and purification characteristics without detracting from its immunogenic properties.