Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths

Curr Biol. 1999 Jul 15;9(14):767-70. doi: 10.1016/s0960-9822(99)80339-x.

Abstract

Eukaryotes have acquired many mechanisms to repair DNA double-strand breaks (DSBs) [1]. In the yeast Saccharomyces cerevisiae, this damage can be repaired either by homologous recombination, which depends on the Rad52 protein, or by non-homologous end-joining (NHEJ), which depends on the proteins yKu70 and yKu80 [2] [3]. How do cells choose which repair pathway to use? Deletions of the SIR2, SIR3 and SIR4 genes - which are involved in transcriptional silencing at telomeres and HM mating-type loci (HMLalpha and HMRa) in yeast [4] - have been reported to reduce NHEJ as severely as deletions of genes encoding Ku proteins [5]. Here, we report that the effect of deleting SIR genes is largely attributable to derepression of silent mating-type genes, although Sir proteins do play a minor role in end-joining. When DSBs were made on chromosomes in haploid cells that retain their mating type, sir Delta mutants reduced the frequency of NHEJ by twofold or threefold, although plasmid end-joining was not affected. In diploid cells, sir mutants showed a twofold reduction in the frequency of NHEJ in two assays. Mating type also regulated the efficiency of DSB-induced homologous recombination. In MATa/MATalpha diploid cells, a DSB induced by HO endonuclease was repaired 98% of the time by gene conversion with the homologous chromosome, whereas in diploid cells with an alpha mating type (matDelta/MATalpha) repair succeeded only 82% of the time. Mating-type regulation of genes specific to haploid or diploid cells plays a key role in determining which pathways are used to repair DSBs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • DNA Damage*
  • DNA Repair*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / physiology*
  • Fungal Proteins / genetics
  • Fungal Proteins / physiology*
  • Genes, Fungal / physiology*
  • Genes, Mating Type, Fungal*
  • Histone Deacetylases*
  • Models, Genetic
  • Mutagenesis
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae*
  • Sirtuin 2
  • Sirtuins
  • Time Factors
  • Trans-Activators / genetics
  • Trans-Activators / physiology*
  • Transcription, Genetic

Substances

  • DNA-Binding Proteins
  • Fungal Proteins
  • SIR3 protein, S cerevisiae
  • SIR4 protein, S cerevisiae
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae
  • Trans-Activators
  • SIR2 protein, S cerevisiae
  • Sirtuin 2
  • Sirtuins
  • Histone Deacetylases