A unique biochemical machinery is present within the two envelope membranes surrounding plastids (Joyard et al., Plant Physiol. 118 (1998) 715-723) that reflects the stage of development of the plastid and the specific metabolic requirements of the various tissues. Envelope membranes are the site for the synthesis and metabolism of specific lipids. They are also the site of transport of metabolites, proteins and information between plastids and surrounding cellular compartments. For instance, a complex machinery for the import of nuclear-encoded plastid proteins is rapidly being elucidated. The functional studies of plastid envelope membranes result in the characterization of an increasing number of envelope proteins with unexpected functions. For instance, recent experiments have demonstrated that envelope membranes bind specifically to plastid genetic systems, the nucleoids surrounded by plastid ribosomes. At early stages of plastid differentiation, the inner envelope membrane contains a unique protein (named PEND protein) that binds specifically to plastid DNA. This tight connection suggests that the PEND protein is at least involved in partitioning the plastid DNA to daughter plastids during division. The PEND protein can also provide a physical support for replication and transcription. In addition, factors involved in the control of plastid protein synthesis can become associated to envelope membranes. This was shown for a protein homologous to the E. coli ribosome recycling factor and for the stabilizing factors of some specific chloroplast mRNAs encoding thylakoid membrane proteins. In fact, the envelope membranes together with the plastid DNA are the two essential constituents of plastids that confer identity to plastids and their interactions are becoming uncovered through molecular as well as cytological studies. In this review, we will focus on these recent observations (which are consistent with the endosymbiotic origin of plastids) and we discuss possible roles for the plastid envelope in the expression of plastid genome.