The vertebrate palatal muscles are derived from the cranial paraxial mesoderm and start myogenesis by the expression of myogenic regulatory factors (MRFs). Predetermined myogenic cells migrate from the cranial paraxial mesoderm into the branchial arches, followed by myogenic differentiation. The objective of this study was to elucidate whether the determination, migration, and differentiation of myogenic cells during the myogenesis of the palatal muscles, particularly the tensor veli palatini (TVP), are related to the extending mandibular nerve in mouse embryos. By immunohistochemical staining at embryonic day (E) 9.5, MyoD1 and myogenin have been expressed in the mandibular arch, into which the mandibular nerve had not yet extended. At E11.5, these myogenic cells encircled the extending mandibular nerve and were distributed from the distal and lateral to the trigeminal ganglion and into the mandibular arch to form the muscle plate, a girdle-like structure. By E12.5, these myogenic cells lost their girdle-like pattern, vacated the trunk area of the mandibular nerve, and were separated into several incompletely divided masses encircling the collateral branches of the mandibular nerve. The TVP started differentiation at E13.5 with the appearance of myofilaments and acetylcholinesterase (AchE), whereas the other palatal muscles began differentiation at E14.5. We defined the differentiation process of mouse palatal muscles into five stages based on the present findings. These results suggest that the determination and initial migration of the palatal myogenic cells into the mandibular arch occur before the mandibular nerve extends out of the trigeminal ganglion, whereas the myogenic cells migrating into the final sites of differentiation intimately relate to the extending nerve.