Purpose: We have previously shown that lactose promotes the proper assembly of photoreceptor outer segments in the absence of the retinal pigment epithelium (RPE). The purpose of this study was to determine if the difference between organized and disorganized membranes was a variation in the amounts of two structural proteins, opsin and rds/peripherin.
Methods: Eye rudiments were dissected from Xenopus laevis embryos and the RPE was removed prior to culturing in the following media: Niu-Twitty medium; Niu-Twitty with mannose; Niu-Twitty with lactose. Controls included retinas that matured in vitro with an adherent RPE. Photoreceptor ultrastructure was evaluated with emphasis on outer segment membrane organization. The relative amounts of opsin and rds/ peripherin, two outer segment-specific proteins, were determined, as were their immunolabeling patterns.
Results: In control retinas, outer segments were composed of stacked, flattened membranous saccules. Opsin labeling of rod outer segments was very dense, indicative of normally organized disc membranes, and rds/peripherin labeling was heavy at the outer segment disc periphery and incisures. In the absence of the RPE, a whorl-like profile of outer segments is present in what would be the sub-retinal space. Opsin immunolabeling was patchy and disorganized. Immunolabeling of rds/peripherin was present, but in a disorderly array. Mannose showed no protective effect. In contrast, lactose promoted the formation of organized outer segments and allowed for near normal expression of both photoreceptor markers. In retinas with disorganized outer segments, the expression of opsin is downregulated while the expression of rds/peripherin is maintained or upregulated.
Conclusions: Lactose protects against the retinal degeneration induced by RPE removal by preserving the outer segment structure and the photoreceptor immunolabeling patterns. It also maintains constant the relative amounts of opsin and rds/peripherin. It is possible that in degenerating retinas, photoreceptors upregulate rds/peripherin expression in attempt to provide additional support for the proper folding of nascent membranes, however this is insufficient to permit organization of the photoreceptor outer segments. Our results suggest that rescue-effect of lactose is mediated by a non-rds/peripherin related mechanism.