The immune response to insulin is regulated by MHC class II genes. Immune response (Ir) gene-linked low responsiveness to protein Ags can be mediated by the low affinity of potential antigenic determinants for MHC molecules (determinant selection) or by the influence of MHC on the functional T cell repertoire. Strong evidence exists that determinant selection plays a key role in epitope immunodominance and Ir gene-linked unresponsiveness. However, the actual measurement of relative MHC-binding affinities of all potential peptides derived from well-characterized model Ags under Ir gene regulation has been very limited. We chose to take advantage of the simplicity of the structure of insulin to study the mechanism of Ir gene control in H-2b mice, which respond to beef insulin (BINS) but not pork insulin (PINS). Peptides from these proteins, including the immunodominant A(1-14) determinant, were observed to have similar affinities for purified IAb in binding experiments. Functional and biochemical experiments suggested that PINS and BINS are processed with similar efficiency. The T cell response to synthetic pork A(1-14) was considerably weaker than the response to the BINS peptide. We conclude that the poor immunogenicity of PINS in H-2b mice is a consequence of the T cell repertoire rather than differences in processing and presentation.