Quadrat-based analysis of two rainforest plots of area 50 ha, one in Panama (Barro Colorado Island, BCI) and the other in Malaysia (Pasoh), shows that in both plots recruitment is in general negatively correlated with both numbers and biomass of adult trees of the same species in the same quadrat. At BCI, this effect is not significantly influenced by treefall gaps. In both plots, recruitment of individual species is negatively correlated with the numbers of trees of all species in the quadrats, but not with overall biomass. These observations suggest, but do not prove, widespread frequency-dependent effects produced by pathogens and seed-predators that act most effectively in quadrats crowded with trees. Within-species correlations of mortality with numbers or biomass are not found in either plot, indicating that most frequency-dependent mortality takes place before the trees reach 1 cm in diameter. Stochastic effects caused by BCI's more rapid tree turnover may contribute to a larger variance in diversity from quadrat to quadrat at BCI, although they are not sufficient to explain why BCI has fewer than half as many tree species as Pasoh. Finally, in both plots quadrats with low diversity show a significant increase in diversity over time, and this increase is stronger at BCI. This process, like the frequency-dependence, will tend to maintain diversity over time. In general, these non-random forces that should lead to the maintenance of diversity are slightly stronger at BCI, even though the BCI plot is less diverse than the Pasoh plot.