We describe genetic screens in Saccharomyces cerevisiae designed to identify mammalian nonreceptor modulators of G-protein signaling pathways. Strains lacking a pheromone-responsive G-protein coupled receptor and expressing a mammalian-yeast Galpha hybrid protein were made conditional for growth upon either pheromone pathway activation (activator screen) or pheromone pathway inactivation (inhibitor screen). Mammalian cDNAs that conferred plasmid-dependent growth under restrictive conditions were identified. One of the cDNAs identified from the activator screen, a human Ras-related G protein that we term AGS1 (for activator of G-protein signaling), appears to function by facilitating guanosine triphosphate (GTP) exchange on the heterotrimeric Galpha. A cDNA product identified from the inhibitor screen encodes a previously identified regulator of G-protein signaling, human RGS5.