The assembly of lipoproteins containing apolipoprotein B is a complex process that occurs in the lumen of the secretory pathway. The process consists of two relatively well-identified steps. In the first step, two VLDL precursors are formed simultaneously and independently: an apolipoprotein B-containing VLDL precursor (a partially lipidated apolipoprotein B) and a VLDL-sized lipid droplet that lacks apolipoprotein B. In the second step, these two precursors fuse to form a mature VLDL particle. The apolipoprotein B-containing VLDL precursor is formed during the translation and concomitant translocation of the protein to the lumen of the endoplasmic reticulum. The VLDL precursor is completed shortly after the protein is fully synthesized. The process is dependent on the microsomal triglyceride transfer protein (MTP). Although the mechanism by which the lipid droplets are formed is unknown, recent observations indicate that the process is dependent on MTP. The fusion of the two precursors is not dependent on MTP, but the mechanism remains to be elucidated. The conversion of the apolipoprotein B-containing precursor to VLDL seems to be dependent on the ADP ribosylation factor 1 (ARF 1) and its activation of phospholipase D. During their assembly, nascent apolipoprotein B chains undergo quality control and are sorted to degradation. Such sorting, which occurs cotranslationally during the formation of the apolipoprotein B-containing precursor, involves cytosolic chaperons and ubiquitination that targets apolipoprotein B to proteasomal degradation. Other levels of sorting occur in the secretory pathway. Thus, lysosomal enzymes are involved as well as the LDL receptor.