To define magnetic resonance imaging (MRI) appearances of the brain in extremely preterm infants between birth and term, a sequential cohort of infants born at a gestational age <30 weeks was studied with a dedicated neonatal magnetic resonance scanner. Images of infants (n = 41) with a median gestational age of 27 weeks (range 23 to 29 weeks) were initially obtained at a median age of 2 days (range 1 to 20 days) and then repeatedly studied; 29 (71%) infants had MRI at a median gestational age of 43 weeks (range 38 to 52 weeks) (term MRI). On the initial MRI scan 28 of 41 infants had abnormalities: either intraventricular hemorrhage, germinal layer hemorrhage, ventricular dilatation, or diffuse and excessive high signal intensity in the white matter on T(2)-weighted images. When magnetic resonance images for preterm infants at term gestation were compared with those of infants in the control group born at term, 22 of 29 infants had dilatation of the lateral ventricles, 24 of 29 had squaring of the anterior or posterior horns of the lateral ventricles, 11 of 29 had a widened interhemispheric fissure or extracerebral space, and 22 of 29 had diffuse and excessive high signal intensity in the white matter. There were no cases of cystic periventricular leukomalacia. We conclude that MRI abnormalities are commonly seen in the brain of preterm infants on whom images are obtained within 48 hours of birth and that further abnormalities develop between birth and term. A characteristic appearance of diffuse and excessive high signal intensity in the white matter on T(2)-weighted images is associated with the development of cerebral atrophy and may be a sign of white matter disease. These MRI appearances may help account for the high incidence of neurodevelopmental impairment in extremely preterm infants.