Recently, it was demonstrated that somatostatin analogs preferential for the SSTR5 subtype suppress PRL release from prolactinoma cell cultures by 30-40%. These data supported the idea of somatostatin receptor subtype-specific control of PRL secretion in such tumors. The present study examines the quantitative profile of SSTRs messenger ribonucleic acid (mRNA) in 10 PRL-secreting tumors and correlates the expression with the ability of native somatostatins (SS14 and SS28), SSTR2 preferential analogs (octreotide and BIM-23197), and the SSTR5 preferential analog BIM-23268 to suppress PRL secretion. RT-PCR quantitative analysis showed a large predominance of SSTR5 mRNA [5648 +/- 1918 pg/pg glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] vs. SSTR2 mRNA (148 +/- 83 pg/pg GAPDH). The SSTR1 transcript was also highly expressed in prolactinomas (1296 +/- 669 pg/pg GAPDH). SSTR5 mRNA expression correlated with PRL inhibition induced by both SRIF14 and SRIF28. Among the different analogs tested, only BIM-23268 produced inhibition of PRL release similar to that achieved with the native peptides. Its EC50 for PRL suppression was 0.28 +/- 0.10 nmol/L. No additive effects on PRL suppression were achieved by cotreatment of the tumor cells with SSTR2 and SSTR5 preferential analogs. In the same tumor cell cultures, quinagolide, a potent dopamine agonist, produced a dose-dependent inhibition of PRL with an EC50 at least 10 times lower than that of BIM-23268. Coincubation of quinagolide and BIM-23268, particularly in tumor cells resistant to dopamine agonist treatment, did not produce additive effects on PRL suppression. In conclusion, prolactinomas have a specific pattern of SSTR subtype mRNA expression (SSTR5 and SSTR1). SSTR5 expression is correlated to PRL regulation. These inhibitory effects are superimposable, at a higher concentration, to those of the dopamine agonists, but are not additive, particularly in the adenomas resistant to dopaminergic suppression of PRL release.