A series of carefully controlled laboratory studies was carried out to investigate oxygen and iron isotope fractionation during the intracellular production of magnetite (Fe(3)O(4)) by two different species of magnetotactic bacteria at temperatures between 4 degrees and 35 degrees C under microaerobic and anaerobic conditions. No detectable fractionation of iron isotopes in the bacterial magnetites was observed. However, oxygen isotope measurements indicated a temperature-dependent fractionation for Fe(3)O(4) and water that is consistent with that observed for Fe(3)O(4) produced extracellularly by thermophilic Fe(3+)-reducing bacteria. These results contrast with established fractionation curves estimated from either high-temperature experiments or theoretical calculations. With the fractionation curve established in this report, oxygen-18 isotope values of bacterial Fe(3)O(4) may be useful in paleoenvironmental studies for determining the oxygen-18 isotope values of formation waters and for inferring paleotemperatures.