We have reported previously that cAMP-response-element-binding protein (CREB) was phosphorylated in a cell-cycle-dependent manner, showing that it was phosphorylated at early S-phase at casein kinase II target sites. To assess the possible involvement of CREB in cell cycle progression, CREB expression vector was transiently transfected into various cells. Unexpectedly we found that transfection with CREB expression vector resulted in an abundance of dead cells. Morphological examination revealed that these cells had undergone apoptosis. The coincidence of CREB overexpression and apoptosis induction at the individual cell level was confirmed by a immunohistochemical study. To confirm that overexpression of CREB was the cause of apoptosis, a dominant-negative mutant of CREB, KCREB, was co-expressed with the wild type. The co-existence of KCREB effectively rescued CREB-mediated apoptosis in a dose-dependent manner, verifying that apoptosis was truly a specific effect of overexpressed CREB and not an artifact of the transfection procedure. Deletion analysis indicates that neither the Q1 transactivation domain, which functions in transcription, nor the kinase-inducible domain, in which a cluster of various kinase targets exists, is necessary; however, the Q2 transactivation domain is required for the induction of apoptosis. A more precise study indicates that the four-residue stretch Glu-Glu-Ala-Ala at the most C-terminal region of the Q2 domain is especially important for the induction of apoptosis. Thus overexpressed CREB induces apoptosis by transmitting certain signals from the C-terminal portion of the Q2 domain. Possible roles of cell-cycle-regulated phosphorylation and also an elevation of the intracellular cAMP level in CREB-induced apoptosis are suggested.