TEL is a sequence-specific transcriptional repressor

J Biol Chem. 1999 Oct 15;274(42):30132-8. doi: 10.1074/jbc.274.42.30132.

Abstract

TEL is a gene frequently involved in specific chromosomal translocations in human leukemia and sarcoma that encodes a member of the ETS family of transcriptional regulators. TEL is unusual among other ETS proteins by its ability to self-associate in vivo, a property that is essential to the oncogenic activation of TEL-derived fusion proteins. We show here that TEL is a sequence-specific transcriptional repressor of ETS-binding site-driven transcription of model and natural promoters. Deletion of the oligomerization domain of TEL or its substitution by the homologous region of monomeric ETS1 impaired the ability of TEL to repress. In contrast, substitution of the oligomerization domain of TEL by unrelated oligomerization domains resulted in an active repressor, showing that the ability of TEL to repress depends on its ability to self-associate. The study of the properties of TEL fusions to the heterologous DNA binding domain of Gal4 identified two autonomous repression domains in TEL, distinct from its oligomerization domain, that are essential to the ability of TEL to repress ETS-binding site-containing promoters. These results have implications for the normal function of TEL, its relation to other ETS proteins, and its role in leukemogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Binding Sites
  • DNA Primers
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • ETS Translocation Variant 6 Protein
  • HeLa Cells
  • Humans
  • Mice
  • Promoter Regions, Genetic
  • Proto-Oncogene Protein c-ets-1
  • Proto-Oncogene Protein c-fli-1
  • Proto-Oncogene Proteins / antagonists & inhibitors
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-ets
  • Repressor Proteins / metabolism*
  • Trans-Activators / genetics
  • Transcription Factors / antagonists & inhibitors
  • Transcription Factors / metabolism*
  • Transcription, Genetic

Substances

  • DNA Primers
  • DNA-Binding Proteins
  • ETS1 protein, human
  • Ets1 protein, mouse
  • Fli1 protein, mouse
  • Proto-Oncogene Protein c-ets-1
  • Proto-Oncogene Protein c-fli-1
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-ets
  • Repressor Proteins
  • Trans-Activators
  • Transcription Factors