Lack of a C-terminal tail in the mammalian gonadotropin-releasing hormone receptor confers resistance to agonist-dependent phosphorylation and rapid desensitization

J Biol Chem. 1999 Oct 15;274(42):30146-53. doi: 10.1074/jbc.274.42.30146.

Abstract

The mammalian gonadotropin-releasing hormone receptor (GnRH-R) is, at present, the only G-protein-coupled receptor that activates phospholipase C and lacks a C-terminal tail. We have previously demonstrated that this unique structural feature is associated with resistance to rapid desensitization of phosphoinositide signaling in COS-7 and HEK-293 cells (Heding, A., Vrecl, M., Bogerd, J., McGregor, A., Sellar, R., Taylor, P. L., and Eidne, K. A. (1998) J. Biol. Chem. 273, 11472-11477). Using receptors tagged with a nonapeptide of the influenza hemagglutinin protein to enable immunoprecipitation, we now demonstrate that the mammalian GnRH-R is not phosphorylated in an agonist-dependent manner. In contrast, the mammalian thyrotropin-releasing hormone receptor and the African catfish GnRH-R, both of which have a C-terminal tail, are phosphorylated in response to agonist challenge. Furthermore, chimeras of the mammalian GnRH-R with the C-terminal tail of either the mammalian thyrotropin-releasing hormone receptor or the catfish GnRH-R are also phosphorylated in an agonist-dependent manner. Only those receptors having C-terminal tails showed desensitization of phosphoinositide responses within 5-10 min of agonist challenge. We also show that the internalization of all these receptors when expressed transiently in COS-7 cells is similar. This dissociates receptor internalization from rapid desensitization and demonstrates that the lack of a C-terminal tail in the mammalian GnRH-R results in an inability of the receptor to undergo agonist-dependent phosphorylation and that this results directly in a resistance to rapid desensitization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • Phosphatidylinositols / metabolism
  • Phosphorylation
  • Receptors, LHRH / agonists*
  • Receptors, LHRH / chemistry
  • Receptors, LHRH / metabolism

Substances

  • Phosphatidylinositols
  • Receptors, LHRH