The Dictyostelium discoideum gelation factor is a two-chain actin-cross-linking protein that, in addition to an N-terminal actin-binding domain, has a rod domain constructed from six tandem repeats of a 100-residue motif that has an immunoglobulin fold. To define the architecture of the rod domain of gelation factor, we have expressed in E. coli a series of constructs corresponding to different numbers of gelation factor rod repeats and have characterised them by chemical crosslinking, ultracentrifugation, column chromatography, matrix-assisted laser desorption ionisation (MALDI) mass spectrometry and NMR spectroscopy. Fragments corresponding to repeats 1-6 and 5-6 dimerise, whereas repeats 1-5 and single repeats 3 and 4 are monomeric. Repeat 6 interacts weakly and was present as monomer and dimer when analysed by analytical ultracentrifugation. Proteolytic digestion of rod5-6 resulted in the generation of two polypeptides that roughly corresponded to rod5 and part of rod6. None of these polypeptides formed dimers after chemical crosslinking. Stable dimerisation therefore appears to require repeats 5 and 6. Based on these data a model of gelation factor architecture is presented. We suggest an arrangement of the chains where only the carboxy-terminal repeats interact as was observed for filamin/ABP280, the mammalian homologue of gelation factor.