Ras malignant transformation requires posttranslational modification by farnesyltransferase (FTase). Here we report on the design and antitumor activity, in monotherapy as well as in combination therapy with cytotoxic agents, of a novel class of non-thiol-containing peptidomimetic inhibitors of FTase and the closely related family member geranylgeranyltransferase I (GGTase I). The non-thiol-containing FTI-2148 is highly selective for FTase (IC50, 1.4 nM) over GGTase I (IC50, 1700 nM), whereas GGTI-2154 is highly selective for GGTase I (21 nM) over FTase (IC50, 5600 nM). In whole cells, the corresponding methylester prodrug FTI-2153 is >3000-fold more potent at inhibiting H-Ras (IC50, 10 nM) than Rap1A processing, whereas GGTI-2166 is over 100-fold more selective at inhibiting Rap1A (IC50, 300 nM) over H-Ras processing. Furthermore, FTI-2153 was highly effective at suppressing oncogenic H-Ras constitutive activation of mitogen-activated protein kinase and human tumor growth in soft agar. FTI-2148 suppressed the growth of the human lung adenocarcinoma A-549 cells in nude mice by 33, 67, and 91% in a dose-dependent manner. Combination therapy of FTI-2148 with either cisplatin, gemcitabine, or Taxol resulted in a greater antitumor efficacy than monotherapy. GGTI-2154 in similar antitumor efficacy experiments is less potent than FTI-2148 and inhibits tumor growth by 9, 27, and 46%. Combination therapy of GGTI-2154 with cisplatin, gemcitabine, or Taxol is also more effective. Finally, FTI-2148 and GGTI-2154 are 30- and 33-fold more selective and 30- and 16-fold more potent in whole cells than our previously reported thiol-containing FTI-276 and GGTI-297, respectively. Thus, our results demonstrate that this highly potent and selective novel class of non-thiol-containing peptidomimetics inhibits human tumor growth in whole animals and that combination therapy with cytotoxic agents is more beneficial than monotherapy.