Temperature acclimation of adult vertebrates typically induces changes in metabolic physiology. During early development, such metabolic compensation might have profound consequences, yet acclimation of metabolism is little studied in early life stages. We measured the effect of egg incubation temperature on resting metabolic rate (RMR) and blood thyroid hormone levels of hatchling snapping turtles (Chelydra serpentina). Like many reptiles, snapping turtles have temperature-dependent sex determination (TSD), in which embryonic temperature determines sex. Therefore, we designed the experiments to separately measure effects of temperature and of sex on the response variables. We incubated eggs in the laboratory at 21. 5 degrees, 24.5 degrees, 27.5 degrees, and 30.5 degrees C, producing both sexes, all males, both sexes, and all females, respectively. Hatchling RMR, when measured at a common temperature (either 25 degrees or 31 degrees C), was negatively correlated with egg temperature in both males and females, such that RMR of turtles from 21.5 degrees C-incubated eggs averaged 160% that of turtles from 30.5 degrees C-incubated eggs. These results indicate that egg temperatures induced positive metabolic compensation in both sexes. Thyroid hormone levels of hatchlings showed similar correlations with egg temperature; thyroxine level of turtles from 21.5 degrees C-incubated eggs averaged 220% that of turtles from 30.5 degrees C-incubated eggs. To examine the possibility that thyroid hormones contribute to positive metabolic compensation, we added triiodothyronine to eggs during mid-incubation. RMR of hatchlings from these treated eggs averaged 131% that of controls, consistent with the previous possibility. Moreover, the effects of embryonic temperature on metabolic physiology, in combination with effects on sex, can result in differences in RMR and thyroid hormone levels between male and female hatchling turtles. Such differences may be important to the ecology and evolution of TSD.