G-CSF not only functions as an endogenous hemopoietic growth factor for neutrophils, but also displays pro-Th2 and antiinflammatory properties that could be of therapeutic benefit in autoimmune settings. We evaluated the effect of treatment with G-CSF in a murine model of spontaneous systemic lupus erythematosus, a disease in which G-CSF is already administered to patients to alleviate neutropenia, a common complication. Chronic treatment of lupus-prone MRL-lpr/lpr mice with low doses (10 microg/kg) of recombinant human G-CSF, despite the induction of a shift toward the Th2 phenotype of the autoimmune response, increased glomerular deposition of Igs and accelerated lupus disease. Conversely, high-dose (200 microg/kg) treatment with G-CSF induced substantial protection, prolonging survival by >2 mo. In the animals treated with these high doses of G-CSF, neither the Th1/Th2 profile nor the serum levels of TNF-alpha and IL-10 were modified. Despite the presence of immune complexes in their kidney glomeruli, no inflammation ensued, and serum IL-12 and soluble TNF receptors remained at pre-disease levels. This uncoupling of immune complex deposition and kidney damage resulted from a local down-modulation of FcgammaRIII (CD16) expression within the glomeruli by G-CSF. Our results demonstrate a beneficial effect of high doses of G-CSF in the prevention of lupus nephritis that may hold promise for future clinical applications, provided caution is taken in dose adjustment.