Modulation of cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis and DNA repair

Mol Pharmacol. 1999 Nov;56(5):966-72. doi: 10.1124/mol.56.5.966.

Abstract

A stable transfectant (S2SN7) of p53-null SaOS-2 (human osteosarcoma) cells expressing wild-type p53 under the tight control of a tetracycline-responsive promoter was used to study the functional roles of p53 in cellular response to cisplatinum (CP). When cells were grown in media containing normal concentrations (10%) of serum, induction of p53 by tetracycline withdrawal resulted in an 8-fold decrease in sensitivity to CP. In contrast, when cells were grown in lower serum (1%) media, induction of p53 led to a 10-fold increase in sensitivity to CP. The p53-mediated sensitivity to CP under lower serum conditions was attributed, at least in part, to increased susceptibility of p53-mediated apoptosis. Under lower serum (0.1-1%) but not normal serum conditions, p53 induction correlated with selective down-regulation of bcl-2, an inhibitor of apoptosis. In addition, a host-cell reactivation assay showed that induction of p53 caused a significant increase in repair of CP-induced DNA damage under normal serum but not low serum conditions. These data suggest that growth conditions may modulate and possibly reverse p53-mediated CP sensitivity by altering p53-mediated gene regulation and, as a result, susceptibility to apoptosis. They also suggest that a combined effect of p53-mediated apoptosis and DNA repair may be the ultimate determinant in p53-mediated cellular resistance or sensitivity to chemotherapeutic drugs.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis*
  • Cell Division / drug effects
  • Cisplatin / pharmacology*
  • Culture Media
  • DNA Damage
  • DNA Repair*
  • DNA, Neoplasm / genetics
  • Down-Regulation
  • Humans
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Tumor Cells, Cultured
  • Tumor Suppressor Protein p53 / biosynthesis
  • Tumor Suppressor Protein p53 / physiology*

Substances

  • Antineoplastic Agents
  • Culture Media
  • DNA, Neoplasm
  • Proto-Oncogene Proteins c-bcl-2
  • Tumor Suppressor Protein p53
  • Cisplatin