Autoimmune diabetes develops following recognition of organ-specific antigens by T cells. The disease begins with peri-islet infiltration by mononuclear cells, proceeds with insulitis and becomes manifest with destruction of insulin-producing islet beta-cells. T cells are necessary to induce insulitis and diabetes, but it is not clear by what mechanisms they can do so, i. e. whether the T cells need to make antigen-specific contact with the beta-cell or whether other interactions are sufficient to induce beta-cell death. In the present study we have constructed chimeric mice in which the bone marrow-derived antigen-presenting cells, but not the islet beta-cells, are capable of presenting antigen to monospecific T cells. We show that both insulitis as well as beta-cell destruction can proceed in the absence of islet beta-cell surface antigen recognition by T cells. Our results support the notion that diabetes can be caused by distinct effector mechanisms.