In the present study, we evaluated whether motility of Kaposi's sarcoma (KS) spindle cells induced by HIV-1 Tat protein is dependent on the synthesis of platelet-activating factor (PAF). The results obtained indicate that Tat induced a dose-dependent synthesis of PAF from KS cells at a concentration as low as 0.1 ng/ml. PAF production started rapidly after Tat stimulation, peaking at 30 minutes and declining thereafter. Tat-induced cell migration was also a rapid event starting at 30 minutes. The motility was abrogated by addition of a panel of chemically unrelated PAF receptor antagonists (WEB 2170, CV 3988, CV 6209, and BN 52021), suggesting that the synthesized PAF mediates the motogenic effect of Tat. This effect was also present on cells plated on a type-I collagen-, fibronectin-, or basement membrane extract-coated surface. Expression of PAF receptor-specific mRNA was detected in KS cells. In addition, examination of the cytoskeletal organization showed that Tat-mediated KS cell redistribution of actin filaments and shape change was also inhibited by a PAF receptor antagonist. Moreover, PAF receptor blockade prevented the up-regulation of beta1 integrin and the down-regulation of alphavbeta3 observed after stimulation of KS cells with Tat. In conclusion, the results of the present study indicate that Tat-induced PAF synthesis plays a critical role in triggering the events involved in motility of KS cells.