Metamitron (1) does not undergo hydrolysis at pH 1-8 and up to 5 M H(2)SO(4). The product of its two-electron reduction, 1, 6-dihydrometamitron (2), on the other hand, undergoes at pH <3 relatively fast hydrolysis. The dependence of the measured rate constant on acidity indicates that the completely protonated form (AH(2)(2+)) predominating in strongly acidic media undergoes hydrolysis slower than the species bearing one less proton (AH(+)). The latter most reactive species is present in highest concentration in solutions of pH between 0 and 2. This species is protonated on the 2,3-azomethine bond and yields as final products 2-hydrazino-2-phenylacetic acid (4) and acethydrazide (5). Kinetic, polarographic, and spectrophotometric measurements indicated for the first dissociation an average value pK(a) = -0.8, for the second pK(a) = 0.95. These observations together with the easy reduction of the 1,6-bond in metamitron (1) indicate that in nature the cleavage of metamitron may be preceded by its reduction to 1, 6-dihydrometamitron (2), which is then hydrolyzed. Thus, anaerobic, reductive conditions are likely preferable for the total microbial degradation of metamitron.