Previous studies have shown that mice lacking the actin-severing and capping protein gelsolin have defects in leukocyte and platelet function. Moreover, dermal fibroblasts from gelsolin knockout (Gsn(-)) mice showed substantially reduced motility, membrane ruffling and pinocytosis. We have generated dendritic cells (DC) from spleens of Gsn(-) mice to investigate the importance of gelsolin in antigen endocytosis and processing. We show here that Gsn(-) DC produce apparently normal membrane ruffles which can resolve to form large macropinosomes. Moreover, presentation of exogenous antigens on both MHC class II and class I molecules was equivalent in Gsn(-) and wild-type DC. Thus the major rearrangements of the actin cytoskeleton needed for DC antigen uptake and presentation can proceed in the absence of a major actin filament regulatory protein.