ClC-4 gene was isolated as a putative Cl(-) channel. Due to a lack of functional expression of ClC-4, its physiological role remains unknown. We isolated a human ClC-4 clone (hClC-4sk) from human skeletal muscles and stably transfected it to Chinese hamster ovary cells. Whole cell patch-clamp studies showed that the hClC-4sk channel was activated by external acidic pH and inhibited by DIDS. It passed a strong outward Cl(-) current with a permeability sequence of I(-) > Cl(-) > F(-). The hClC-4sk has consensus sites for phosphorylation by protein kinase A (PKA); however, stimulation of PKA had no effect on the currents. hClC-4sk mRNA was expressed in excitable tissues, such as heart, brain, and skeletal muscle. These functional characteristics of hClC-4sk provide a clue to its physiological role in excitable cells.