Usefulness of statistic experimental designs in enzymology: example with recombinant hCYP3A4 and 1A2

Anal Biochem. 1999 Dec 1;276(1):18-26. doi: 10.1006/abio.1999.4304.

Abstract

First, the effects of 10 incubation factors were screened altogether on nifedipine dehydrogenase (NIF) and methoxyresorufin O-deethylase (MROD) activities catalyzed by recombinant human CYP3A4 and 1A2, respectively. Using a statistic experimental design, only 36 assays were needed to be exhaustive. Eight factors influenced CYP3A4-mediated NIF activity: buffer type, pH, temperature, Mg/EDTA, cytochrome b5, NADPH-P450 reductase, NADH, and solvent. Two factors had no significant effect: total ionic concentration and catalase/reduced glutathione. Six factors influenced CYP1A2-mediated MROD rates: buffer type, pH, temperature, Mg/EDTA, NADH, and glycerol. Four factors had no significant effect: total ionic concentration, cytochrome b5, reductase, and NAD+. Secondly, the combined effects of ionic strength and Mg concentration on NIF/CYP3A4 were studied and easily modeled using another statistic experimental design. The effect of Mg was strong at a constant ionic strength of 100 mM and negligible at a constant ionic strength of 500 mM. Thirdly, the effects of influencing factors and their interactions on MROD/CYP1A2 were modeled after 40 assays using a third statistic experimental design. Later experiments confirmed the predictivity of the models and the efficiency of optimized conditions. This approach can be applied to other biochemistry areas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biometry
  • Cytochrome P-450 CYP1A2 / genetics
  • Cytochrome P-450 CYP1A2 / metabolism*
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Humans
  • In Vitro Techniques
  • Kinetics
  • Magnesium / pharmacology
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Models, Biological
  • Osmolar Concentration
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / genetics
  • Substrate Specificity

Substances

  • Recombinant Proteins
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • CYP3A protein, human
  • Cytochrome P-450 CYP1A2
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human
  • Magnesium