Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo

Development. 2000 Jan;127(2):355-66. doi: 10.1242/dev.127.2.355.

Abstract

It has long been appreciated that spermiogenesis, the cellular transformation of sessile spermatids into motile spermatozoa, occurs in the absence of new DNA transcription. However, few studies have addressed whether the physical presence of a sperm nucleus is required either during spermiogenesis or for subsequent sperm functions during egg activation and early zygotic development. To determine the role of the sperm nucleus in these processes, we analyzed two C. elegans mutants whose spermatids lack DNA. Here we show that these anucleate sperm not only differentiate into mature functional spermatozoa, but they also crawl toward and fertilize oocytes. Furthermore, we show that these anucleate sperm induce both normal egg activation and anterior-posterior polarity in the 1-cell C. elegans embryo. The latter finding demonstrates for the first time that although the anterior-posterior embryonic axis in C. elegans is specified by sperm, the sperm pronucleus itself is not required. Also unaffected is the completion of oocyte meiosis, formation of an impermeable eggshell, migration of the oocyte pronucleus, and the separation and expansion of the sperm-contributed centrosomes. Our investigation of these mutants confirms that, in C. elegans, neither the sperm chromatin mass nor a sperm pronucleus is required for spermiogenesis, proper egg activation, or the induction of anterior-posterior polarity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Caenorhabditis elegans / embryology*
  • Cell Nucleus / metabolism
  • Cell Polarity / genetics
  • Immunohistochemistry
  • Male
  • Meiosis
  • Morphogenesis
  • Mutation
  • Oocytes / metabolism
  • Reproduction / genetics*
  • Spermatozoa / growth & development
  • Spermatozoa / ultrastructure
  • Time Factors