Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity

Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14961-6. doi: 10.1073/pnas.96.26.14961.

Abstract

Transforming growth factor beta (TGF-beta)-mediated G(1) arrest previously has been shown to specifically target inactivation of cyclin D:cyclin-dependent kinase (Cdk) 4/6 complexes. We report here that TGF-beta-treated human HepG2 hepatocellular carcinoma cells arrest in G(1), but retain continued cyclin D:Cdk4/6 activity and active, hypophosphorylated retinoblastoma tumor suppressor protein. Consistent with this observation, TGF-beta-treated cells failed to induce p15(INK4b), down-regulate CDC25A, or increase levels of p21(CIP1), p27(KIP1), and p57(KIP2). However, TGF-beta treatment resulted in the specific inactivation of cyclin E:Cdk2 complexes caused by absence of the activating Thr(160) phosphorylation on Cdk2. Whole-cell lysates from TGF-beta-treated cells showed inhibition of Cdk2 Thr(160) Cdk activating kinase (CAK) activity; however, cyclin H:Cdk7 activity, a previously assumed mammalian CAK, was not altered. Saccharomyces cerevisiae contains a genetically and biochemically proven CAK gene, CAK1, that encodes a monomeric 44-kDa Cak1p protein unrelated to Cdk7. Anti-Cak1p antibodies cross-reacted with a 45-kDa human protein with CAK activity that was specifically down-regulated in response to TGF-beta treatment. Taken together, these observations demonstrate that TGF-beta signaling mediates a G(1) arrest in HepG2 cells by targeting Cdk2 CAK and suggests the presence of at least two mammalian CAKs: one specific for Cdk2 and one for Cdk4/6.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • CDC2-CDC28 Kinases*
  • Cyclin E / metabolism*
  • Cyclin H
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinase-Activating Kinase
  • Cyclin-Dependent Kinases / antagonists & inhibitors
  • Cyclin-Dependent Kinases / metabolism*
  • Cyclins / metabolism
  • Down-Regulation
  • Enzyme Activation
  • G1 Phase / drug effects*
  • Humans
  • Models, Biological
  • Phosphorylation
  • Protein Serine-Threonine Kinases / metabolism*
  • Threonine / metabolism
  • Transforming Growth Factor beta / pharmacology*
  • Tumor Cells, Cultured

Substances

  • CCNH protein, human
  • Cyclin E
  • Cyclin H
  • Cyclins
  • Transforming Growth Factor beta
  • Threonine
  • Protein Serine-Threonine Kinases
  • CDC2-CDC28 Kinases
  • CDK2 protein, human
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinases
  • Cyclin-Dependent Kinase-Activating Kinase
  • CDK7 protein, human