Experiments were designed to determine the effects of supplemental dietary L-arginine on the endothelial and smooth muscle function of canine coronary arteries. One group of dogs was fed the standard laboratory chow while another group was supplemented with 250 mg/kg per day L-arginine. All dogs had undergone bilateral reversed interposition saphenous vein grafting and received 325 mg/day oral aspirin. After 5 weeks of arginine feeding, left circumflex coronary arteries were removed, cut into rings, and suspended for the measurement of isometric force in organ chambers. Concentration-response curves were obtained to L-arginine, UK-14,304 (alpha2-adrenergic agonist) and A23187 (calcium ionophore) in the absence and presence of N(G)-monomethyl-L-arginine (L-NMMA) and tetraethylammonium (TEA) alone or in combination. Serum concentrations of L-arginine increased by about 20% following 2 weeks of arginine feeding and remained elevated throughout the study. In rings with and without endothelium contracted with prostaglandin F2alpha, L-arginine caused concentration-dependent contractions in rings from control animals but no significant change in tension in rings from arginine-fed animals. Contractions to L-arginine in control animals were reduced by either L-NMMA or TEA. Endothelium-dependent relaxations to the alpha2-adrenergic agonist were decreased with arginine feeding while relaxations to the calcium ionophore and the endothelium-derived factor nitric oxide were similar among groups. Relaxations to UK-14,304 were reduced by L-NMMA in both groups but by TEA only in rings from control animals. These results suggest that dietary supplementation with L-arginine modifies reactivity of endothelium and smooth muscle by at least two mechanisms: one associated with activation of potassium channels and the other with receptor-coupled release of nitric oxide.