In bone marrow, haematopoietic stem cells (HSC) rely on close contact with stromal cells for proliferation and differentiation. Stromal cell-derived factor (SDF-1) is a chemokine produced by bone marrow stromal cells and has been reported to be a chemoattractant for CD34(+)cells. SDF-1 was evaluated for effects on proliferation of both mature and immature human progenitor cells in vitro. Neither proliferation nor maturation of peripheral blood cells was stimulated by SDF-1 alone. Moreover, we have previously demonstrated that 5-fluorouracile (5-FU) resistant HSC require a combination of interleukin 12 (IL-12), IL-6 and SCF for the production of morphologically recognizable clonogenic elements at day 14 in semisolid medium. Our data reported a strong enhancement of the IL-6, IL-12, SCF-induced synergism (172%) by SDF-1 (296.5%). Furthermore, our data suggest that this chemokine alone had no effect on triggering quiescent cells and may preserve these cells from 5-FU cell damage or upregulate early-acting cytokine receptors. Thus, SDF-1 might play a key role in early human haematopoiesis through its potent synergistic effects in combination with early-acting cytokines. These results suggest that a programmed response to sequential cytokine stimulation may be part of a control mechanism required for maintenance of proliferation of primitive HSC.
Copyright 2000 Academic Press.